Skip to main content

Hardware-Accelerated Machine Learning [Experimental]

This feature allows you to use a GPU to accelerate machine learning tasks, such as Smart Search and Facial Recognition, while reducing CPU load. As this is a new feature, it is still experimental and may not work on all systems.

Supported APIs

  • ARM NN (Mali)
  • CUDA (NVIDIA)
  • OpenVINO (Intel)

Limitations

  • The instructions and configurations here are specific to Docker Compose. Other container engines may require different configuration.
  • Only Linux and Windows (through WSL2) servers are supported.
  • ARM NN is only supported on devices with Mali GPUs. Other Arm devices are not supported.
  • The OpenVINO backend has only been tested on an iGPU. ARC GPUs may not work without other changes.

Prerequisites

ARM NN

  • Make sure you have the appropriate linux kernel driver installed
    • This is usually pre-installed on the device vendor's Linux images
  • /dev/mali0 must be available in the host server
    • You may confirm this by running ls /dev to check that it exists
  • You must have the closed-source libmali.so firmware (possibly with an additional firmware file)
    • Where and how you can get this file depends on device and vendor, but typically, the device vendor also supplies these
    • The hwaccel.ml.yml file assumes the path to it is /usr/lib/libmali.so, so update accordingly if it is elsewhere
    • The hwaccel.ml.yml file assumes an additional file /lib/firmware/mali_csffw.bin, so update accordingly if your device's driver does not require this file

CUDA

  • You must have the official NVIDIA driver installed on the server.
  • On Linux (except for WSL2), you also need to have NVIDIA Container Runtime installed.

Setup

  1. If you do not already have it, download the latest hwaccel.ml.yml file and ensure it's in the same folder as the docker-compose.yml.
  2. In the docker-compose.yml under immich-machine-learning, uncomment the extends section and change cpu to the appropriate backend.
  3. Redeploy the immich-machine-learning container with these updated settings.

Tips

  • You may want to increase concurrency past the default for higher utilization. However, keep in mind that this will also increase VRAM consumption.
  • Larger models benefit more from hardware acceleration, if you have the VRAM for them.